ePrints Repository

Microtubules Are a Target for Self-Incompatibility Signaling in Papaver Pollen

Poulter, N. S. and Vatovec, S. and Franklin-Tong, V. E. (2008) Microtubules Are a Target for Self-Incompatibility Signaling in Papaver Pollen. PLANT PHYSIOLOGY, 146 (3). pp. 1358-1367. ISSN 0032-0889

Loading
PDF (698Kb)

URL of Published Version: http://dx.doi.org/10.1104/pp.107.107052

Identification Number/DOI: 10.1104/pp.107.107052

Perception and integration of signals into responses is of crucial importance to cells. Both the actin and microtubule cytoskeleton are known to play a role in mediating diverse stimulus responses. Self-incompatibility (SI) is an important mechanism to prevent self-fertilization. SI in Papaver rhoeas triggers a Ca2+-dependent signaling network to trigger programmed cell death (PCD), providing a neat way to inhibit and destroy incompatible pollen. We previously established that SI stimulates F-actin depolymerization and that altering actin dynamics can push pollen tubes into PCD. Very little is known about the role of microtubules in pollen tubes. Here, we investigated whether the pollen tube microtubule cytoskeleton is a target for the SI signals. We show that SI triggers very rapid apparent depolymerization of cortical microtubules, which, unlike actin, does not reorganize later. Actin depolymerization can trigger microtubule depolymerization but not vice versa. Moreover, although disruption of microtubule dynamics alone does not trigger PCD, alleviation of SI-induced PCD by taxol implicates a role for microtubule depolymerization in mediating PCD. Together, our data provide good evidence that SI signals target the microtubule cytoskeleton and suggest that signal integration between microfilaments and microtubules is required for triggering of PCD.

Type of Work:Article
Date:2008 (Publication)
School/Faculty:Schools (1998 to 2008) > School of Biosciences
Department:School of Biosciences
Subjects:Q Science (General)
QK Botany
Institution:University of Birmingham
Copyright Holders:American Society of Plant Biologist
ID Code:1120
Refereed:YES
Local Holdings:
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page