ePrints Repository

Synthesis and characterisation of oxyanion-doped manganites for potential application as SOFC cathodes

Porras-Vasquez, Jose and Kemp, T and Hanna, J and Slater, Peter.R. (2012) Synthesis and characterisation of oxyanion-doped manganites for potential application as SOFC cathodes. Journal of Materials Chemistry, 22. pp. 8287-8293.

PDF (684Kb)

URL of Published Version: http://pubs.rsc.org/en/content/articlelanding/2012/jm/c2jm16645c

Identification Number/DOI: 10.1039/C2JM16645C

In this paper we report the successful incorporation of borate and phosphate into CaMnO3 and borate into La1-ySryMnO3−δ. For CaMnO3, an increase in the electronic conductivity was observed, which can be correlated with electron doping due to the oxyanion doping favoring the introduction of oxide ion vacancies (as well as the higher valence of P5+ compared to Mn4+ in the case of phosphate doping). The highest conductivity at 800ºC was observed for CaMn0.95P0.05O3-δ, 43.0 S·cm-1, in comparison with 7.6 S·cm-1 for undoped CaMnO3 at the same temperature. For La1-ySryMnO3−δ the conductivity suffers a decrease for all compositions on borate doping, attributed to a reduction in the hole (Mn4+) concentration. In order to investigate the potential of these materials as SOFC cathodes, the chemical compatibility with Gd0.1Ce0.9O1.95 (CGO10) has also been investigated. For the calcium manganites, the lowest temperature examined without reaction was 900 ºC, with minor amounts of Ca4Mn3O10 observed at 1000ºC. Composites of these cathode materials with 50% CGO10 were examined on dense CGO10 pellets and the area specific resistances (ASR) in symmetrical cells were determined. The ASR values, at 800ºC, were 1.50, 0.37 and 0.30 Ω·cm2 for CaMnO3, CaMn0.95B0.05O3-δ and CaMn0.95P0.05O3-δ, respectively. For the lanthanum strontium manganites, the B-doped compositions showed an improvement in the ASR values with respect to the parent compounds, despite the lower electronic conductivity. This may be due to an increase in ionic conductivity due to borate incorporation leading to the formation of oxide ion vacancies. Thus these preliminary results show that oxyanion doping has a beneficial effect on the performance of perovskite manganite cathode materials, and suggests that this doping strategy warrants further investigation in other perovskite cathode systems.

Type of Work:Article
Date:16 March 2012 (Publication)
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Chemistry
Keywords:solid oxide fuel cells, cathodes, perovskite
Subjects:QD Chemistry
Institution:University of Birmingham
Copyright Holders:Royal Society of Chemistry
ID Code:1145
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page