Relationships between Exercise and Three Components of Mental Well-Being in Corporate Employees

Date of submission: 05/05/04
Date of resubmission: 16/11/04
Abstract

Objectives: The main purpose of the present study was to examine the relationships between exercise participation and three components of mental well-being (physical self, work-related, and global) in a sample of corporate employees. As a subsidiary and exploratory question, we also examined whether these well-being components are more strongly related to structured exercise participation scores compared to total levels of physical activity.

Design: Cross-sectional survey.

Method: The participants were 312 employees from an information technology company (n=204 males and n=108 females). Structural equation modelling was used to examine links between exercise participation and the three well-being components within a hierarchical framework, featuring global well-being constructs at the apex and specific elements of well-being at lower levels.

Results: Support was found for the a priori model in that there were direct paths from exercise to physical self and enthusiasm at work. Furthermore, there were indirect paths between exercise and global well-being components through measures of the physical self and enthusiasm at work. The results of an alternative model using physical activity as opposed to exercise were generally similar.

Conclusion: The support found for the exercise and well-being model indicates that exercise is associated directly and indirectly with high well-being in various facets of employees’ lives. Thus, this study extends previous research that has examined associations between exercise and isolated indicators of employee well-being. Finally, the results pertaining to physical activity suggest that workplace exercise promotion programmes should incorporate and promote lifestyle physical activity.

Key words: Physical activity, mental health, hierarchical, work, physical self.
There is accumulated research evidence that supports the efficacy of exercise in both the treatment of mental illness (Craft & Landers, 1998) and the promotion of mental well-being (Biddle, Fox, & Boutcher, 2000). Indeed, consistent positive effects of exercise on several positive well-being variables, such as mood (Biddle, 2000), anxiety (Taylor, 2000) self-perceptions and self-esteem (Fox, 2000) have been documented. In view of this evidence, the limited volume of studies examining the effects of exercise on the mental well-being of employees seems surprising, given the importance of employee well-being.

Health and well-being have important consequences for individual employees, as well as for the organisation in which they work (Danna & Griffin, 1999), as these variables affect illness-related absenteeism rates (Aldana, 2001; Anderson, Serxner, & Gold, 2001).

Furthermore, gains in employee health and well-being are generally agreed to go beyond financial profits since they can be perceived as a sign that the employees are valued by their company. Health promotion programmes may therefore work to improve the image of a company as an organisation that cares about the welfare of its employees, and this may attract productive employees (DiNubile & Sherman, 1999). Lastly, according to Danna and Griffin (1999), well-being should be an important focus of research in the workplace because individuals’ experiences at work may also spill over into domains outside working life.

In workplaces that offer health promotion activities, employee exercise programmes are widespread. These programmes have been offered in the workplace for some time now, especially in the US (Shephard, 1996), and their implementation has mostly been based on increasing the physical fitness of employees (e.g. Dishman, Oldenburg, O’Neal, & Shephard, 1998). Research that has examined well-being outcomes of exercise in the work setting suggests that employees ‘feel better’ as a result of exercise participation (Shephard, 1996),
Relationships between exercise and well-being

However, the extent to which such feelings have broader implications for their mental well-being at work and in their lives in general is unclear. Therefore, the main aim of the present study, is to examine relationships between exercise participation and well-being indicators of the working and non-working lives of employees.

One of the challenges facing researchers in this area is the inconsistency across studies in the measurement of mental well-being of employees. Despite such inconsistencies, recent conceptualisations suggest that mental well-being is a multi-dimensional construct. For example, based on a systematic review of the literature on well-being in the workplace, Danna and Griffin (1999) suggested that employee well-being is best expressed as incorporating context-free or global elements of life experience (e.g., life satisfaction and happiness), alongside generalised work-related experiences (e.g., job satisfaction), and situation-specific elements of well-being in the workplace (e.g., satisfaction with pay and co-workers). Outside the work context, Diener, Suh, Lucas, and Smith (1999) have also emphasised the multi-dimensional nature of subjective well-being, Diener et al. (1999) conceptualised well-being as comprising of the global element of life satisfaction, as well as more domain-specific satisfactions and affect. Taken together, Danna and Griffin’s (1999) and Diener et al.’s (1999) suggestions imply that assessment of mental well-being should not only be conducted at the global level but also in specific life domains.

Obviously, work life is an important life domain. Therefore, in the present study, the relationships between exercise involvement and variables that might be relevant to well-being in the workplace were of primary interest. Two key threads were established around a) perceptions of the self, and b) life satisfaction. Both global and specific elements of each were considered.

Self-esteem, regarded as the critical global indicator of the self-system (Marsh, 1997), serves a pivotal function in employees’ lives, due to its close association with mental health.
and emotional adjustment. Specifically, low levels of self-esteem are often implicated in mental illness, such as depression (American Psychiatric Association, 1994), and are associated with poor health behaviours (Torres & Fernandez, 1995). In contrast, high levels of self-esteem are associated with several positive traits, such as independence, leadership and adaptability (Wylie, 1989). Research evidence also suggests that self-esteem moderates the relationship between stress and illness (Rector & Roger, 1996). This is a particularly important finding given that the Health and Safety Executive (2004) estimates that approximately half a million employees in the UK experience work-related stress which can result in various illnesses.

There is also research evidence suggesting that self-esteem is significantly related to job performance. According to Judge, Erez and Bono (1998), self-esteem is linked to job performance because employees with positive views of themselves are more motivated to perform well in their jobs. At an empirical level, a meta-analysis by Judge and Bono (2001) found a moderate correlation of .26 between the two variables. Although this relationship is not particularly strong, Judge and Bono (2001) concluded that, based on existing evidence, self-esteem is one of the best dispositional predictors of job performance. Clearly, self-esteem is important to the individual’s health and functioning at work. Therefore, research on factors associated with increased self-esteem in the workplace is worthwhile.

Although global self-esteem is underpinned by self-perceptions in many different life domains (e.g., work, family, spiritual, social and physical; Marsh, 1997), physical self was of interest in the present study because of the consistently high relationships between aspects of the physical self and self-esteem (Fox, 1997). The salience of the physical self seems to arise from the unique property of the body in acting as an interface between the self and the tangible world. In fact, the physical self has sometimes been considered as the ‘public self’ serving as the display board for culturally valued characteristics (Fox, 1997). Furthermore, the
physical self incorporates well-studied constructs such as body image, perceptions of physical
compétence and self-confidence. Indeed, such variables may be important in work roles
requiring public presence. Furthermore, physical self-worth, which is a global indicator of
salient aspects of different aspects of the self, has mental well-being properties in its own
right. For example, physical self-worth has shown to relate with well-being indicators, such as
positive affect and emotional adjustment, even when global self-esteem and social desirability
are statistically controlled (Sonstroem & Potts, 1996; Van de Vliet et al., 2002). The issue of
whether physical self-perceptions are directly related to positive affect at work is of interest,
because it will indicate a previously unidentified spill-over between the physical and the work
self.

One important means by which physical self-perceptions are enhanced is through
exercise involvement. Indeed, physical self-perceptions have consistently been related to
exercise from adolescence onwards (Fox, 2000). Furthermore, randomised controlled trials
have indicated that improvements in physical self-perceptions through exercise can generalise
to global self-esteem (Fox, 2000; Taylor & Fox, in press). The physical self is therefore a
potential mediator between exercise involvement and self-esteem. This mediating role, also
shown in Sonstroem and Morgan’s (1989) Exercise and Self-Esteem Model, has been
supported in various studies using structural equation modelling (e.g., Sonstroem, Harlow &
Josephs, 1994; Sonstroem, Harlow, Gemma & Osborne, 1991). However, this mediating
property of physical self-worth, has not been examined in employee populations.

Besides self-esteem, life satisfaction is another important aspect of employee subjective
well-being (Danna & Griffin; 1999). Life satisfaction has been shown to relate to job
satisfaction (Judge & Watanabe, 1993), general mental health (Janman, Jones, Payne, & Rick,
1988) and performance at work (Judge, Thoresen, Bono, & Patton, 2001). Similar to self-
esteeeom, life satisfaction is a global indicator of well-being that is based on interactions in
several life domains (Diener, Sapyta, & Suh, 1998). Thus satisfaction with the body, social or
family relationships and financial circumstances may all contribute to global life satisfaction.
Satisfaction with physical functioning and appearance may also be important when judging
levels of life satisfaction due to the cultural prominence of certain body types. Physical
activity may improve satisfaction with the physical self. This was demonstrated in a
randomised controlled trial by Rejeski et al. (2001) using more than 800 sedentary
individuals. The authors found that increases in physical activity levels were positively
associated with subjective well-being and that satisfaction with physical functioning and
appearance served as significant mediators in this relationship. Whether satisfaction with the
physical aspects of the self plays a mediating role between exercise and life satisfaction in
employees has yet to be explored.

In addition to self-esteem and life satisfaction, affect constitutes another key element of
subjective well-being (Diener et al., 1999). Affect experienced in the work setting has
particularly important implications for employees and worksites. More specifically, positive
affect at work is consistently related to job performance, measured by supervisor ratings
(Rust, 1999) and reduced absenteeism (Pellet & Xin, 1999). In addition, positive affect at
work is one of the main predictors of job satisfaction, even when statistically controlling for
dispositional happiness (Weiss, Nicholas, & Daus, 1999). These results make intuitive sense,
as happier employees are less likely to be absent from work and are more motivated to work.

The relationship between exercise participation and positive affect experienced at work
has received some research attention. For example, Daley and Parfitt (1996) showed that
participation in employee exercise programmes is related to mood states. Furthermore, in the
general population it has been found that even single sessions of exercise can produce more
positive mood and a sense of energy and vigour (Biddle, 2000). Since exercise can predict
indicators of positive affect at work, and given that positive affect is a main predictor of job
satisfaction (Weiss et al., 1999), it is interesting to examine whether positive affect serves as a mediating variable linking exercise and job satisfaction. Indeed, although previous studies have examined associations between participation in workplace exercise programmes and job satisfaction, they have not tested variables that may explain this link (e.g. Daley & Parfitt, 1996; Kirkcaldy, Cooper, Shephard, & Brown, 1994).

An additional important issue to consider in the relationship between exercise and mental well-being is the type of physical activity that is being examined. It is generally agreed that physical activity refers to any bodily movements that result in energy expenditure (Shephard, 1994). As such, it includes not only structured exercise and sport programmes but also incidental activity such as walking or cycling to work. In contrast, exercise and sport participation are seen as sub-components of physical activity that are intentional and self-directed. Currently, little is known about which components of physical activity are more strongly related to mental well-being variables. To date, the focus of research in this area has been on structured exercise as opposed to physical activity. However, one of the problems facing exercise practitioners is that sedentary or insufficiently active employees tend not to take part in worksite exercise programmes (Shephard, 1999). If it can be demonstrated that habitual physical activity is related to employee well-being as strongly as exercise is, this could have important implications for workplace programmes which could pay more emphasis on lifestyle physical activity. Such types of activity (e.g., walking) may be more attractive to employees who are currently sedentary or insufficiently active as opposed to structured exercise programmes.

In view of the above, this research attempts to provide initial insight into key indicators of well-being in the workplace and their potential links with exercise participation. Building on both the subjective well-being and the self literatures, a multidimensional and hierarchical view of these constructs was taken with global constructs at the highest level and
domain-specific constructs at a lower level. In this paper, life satisfaction and self-esteem were measured as global indicators of well-being. Job satisfaction, job affect (enthusiasm), physical self-worth and physical satisfaction were seen as lower level indicators in the domains of work and the self respectively (see Figure 1). In line with the model by Sonstroem and Morgan (1989), exercise participation was hypothesised to have stronger relationships with domain-level constructs than with global constructs. Based on Sonstroem and Potts’ (1996) as well as Van de Vliet et al.’s (2002) findings linking physical self-worth with general affective states, we further explored the possibility that physical self-worth was directly related to affect (enthusiasm) at work. All hypothesised direct paths are presented in Figure 1.

A similar model was specified using total physical activity as opposed to exercise, in order to examine whether lifestyle physical activity is related in the same way as exercise is with well-being and self indices.

We also hypothesised that any relationships between exercise and global measures of well-being would be mediated through domain-level variables. Based on the aforementioned literature, the following indirect paths were hypothesised: exercise to self-esteem through physical self-worth, exercise to life satisfaction through physical satisfaction, and exercise to job satisfaction through enthusiasm at work.

We were also interested to examine whether groups high or low in levels of exercise participation differed significantly in each of the three components of well-being (i.e., physical, work-related and global). The groups were created using quintile scores because the use of quintiles allows for a more detailed analysis of the relationships between exercise and mental well-being compared to when fewer groups are used. With quintiles, differences in well-being between individuals with subtle differences in exercise levels can be explored. This may be particularly important because little is known regarding what levels of exercise are associated with favourable well-being in the workplace. Therefore, the results from this
analysis could have implications for exercise promotion practices in the workplace. Similar analyses were carried out with physical activity quintile groups to compare the pattern of results for exercise and total physical activity.

Method

Participants and Procedure

A multi-questionnaire pack was uploaded on the World Wide Web and was piloted on a small sample of employees ($n = 15$) from a large information technology company. Based on the results of the pilot study, small modifications were made to ensure that the web-pages became more user-friendly. Then, an e-mail was sent to all employees ($N = 940$) at the site to let them know of the web address of the questionnaire and to request their participation. Participation was voluntary and all participants were guaranteed confidentiality and anonymity. Three hundred and twelve employees ($n = 204$ males; $n = 108$ females) took part in this study. This represents a 33.19% response rate to the initial email invitation. The mean age of the participants was 34.11 years ($SD = 8.07$). Compared to the mean age of 37.80 years for the workforce population of this company, the participants in the present study were slightly younger. In addition, the gender distribution in this study (approximately 65% males and 34% females) was relatively similar to that of the whole workforce (app. 76% males and 24% females), although there was a slight over-representation of females in the sample. The job role profiles of those who participated in the study were: managers/supervisors 13.14%; engineers 28.21%; specialists and analysts 17.63%; production/technical staff 6.09%; clerical workers 10.58%; others 23.72%. This breakdown of role profiles is very similar to the role profile breakdown of the whole workforce.

Instruments

Life satisfaction. The Satisfaction With Life Scale (SWLS; Diener, Emmons, Larsen, & Griffin, 1985) was used to measure global life satisfaction. This questionnaire consists of five
items (e.g. “In most ways my life is close to my ideal”), presented in seven-point scales, ranging from 1 ("strongly disagree") to 7 ("strongly agree"). The instrument has been widely used and high levels of reliability and validity have been reported (Diener et al., 1985). The internal reliability co-efficient for this scale in the present study was $\alpha = .88$.

Self-esteem. The global self-worth (six items) subscale from the Adult Self-Perception Profile (ASPP; Messer & Harter, 1986) was used. The items are presented in a structured alternative format with “sort of true for me” and “really true for me” options. This has been shown to minimise the tendency for socially desirable responding (Messer & Harter, 1986). The items are scored from 1 to 4, with 1 representing the least adequate self-judgement and 4 representing the most adequate self-judgement. Messer and Harter (1986) have found adequate levels of reliability and validity for the scale. A high alpha co-efficient was also found in the present study ($\alpha = .88$).

Job satisfaction. A shortened version of Brayfield and Rothe's (1951) Job Satisfaction questionnaire, used by Judge, Locke, Durham and Kluger (1998), was also employed in this study. This version consists of five items and the response scale ranges from 0 (“strongly disagree”) to 10 (“strongly agree”). An example item is “I feel fairly well satisfied with my present job”. High reliability and validity levels have been found for this version of the scale (Judge et al., 1998). In this study the reliability co-efficient for the scale was $\alpha = .87$.

Job affect. The Job Affect Scale (JAS; Brief, Burke, George, Robinson, & Webster, 1988) was used to assess job affect within the past week. The scale consists of 20 items and is based on Watson and Tellegen’s (1985) consensual mood structure. A confirmatory factor analysis of the scale by Burke, George, Brief, Roberson and Webster (1989) showed that the twenty mood descriptors should be conceptualised as four unipolar factors: nervousness (6 items), relaxation (4 items), enthusiasm (6 items), and fatigue (4 items). Participants are asked to indicate the extent to which they felt each of the mood descriptors at work during the past...
week using a scale ranging from 1 (“very slightly or not at all”) to 5 (“very much”). Ten of
the items are indicators of negative affect and the other ten items are indicators of positive
affect at work. Brief et al. (1988) did not examine the internal reliability of the scale. In the
present study the Cronbach’s alpha coefficients for each of the subscales were: Enthusiasm, \(\alpha = .81 \); Relaxation, \(\alpha = .80 \); Nervousness, \(\alpha = .84 \); Fatigue, \(\alpha = .83 \).

Physical self-worth. The physical self-worth subscale from The Physical Self-Perception
Profile (PSPP; Fox, 1990) consists of six items with the response format organised as four-
point structured alternatives. The PSPP is a widely used scale which has received strong
support for its reliability and validity across a wide range of populations (Byrne, 1996). A
high internal reliability rating was found for this scale (\(\alpha = .89 \)).

Physical satisfaction. The Physical Satisfaction Scale is a four-item scale designed by
Thøgersen, Fox and Ntoumanis (2002). It measures the degree of satisfaction with health, and
appearance-related factors (i.e., overall appearance, weight, and shape/body build). The
response format consists of a five-point scale ranging from 1 (“completely dissatisfied”) to 5
(“completely satisfied”). Previous factor analysis extracted one factor that explained 60.21% of the variance (Thøgersen et al., 2002). The internal reliability for this scale in the present study was \(\alpha = .81 \). The physical satisfaction scores in the participants from the present study had a mean of 3.17 (\(SD = .75 \)).

Physical activity. Baecke's Habitual Physical Activity Questionnaire (Baecke, Burema,
& Frijters, 1982) was used to measure self-reported levels of physical activity. This
questionnaire measures physical activity in three different domains: work (including e.g. main
occupation, frequency of sitting, standing and sweating at work), exercise/sport (referred to as
exercise in the present study), and leisure-time (excluding exercise and sport, but including
walking and cycling). It also allows the calculation of a total index of physical activity from
all three domains, which ranges between 3 (no physical activity) and 15 (high level of
physical activity). Adequate psychometric properties for this questionnaire have been reported in various studies (Baecke et al., 1982). The Cronbach alpha coefficient for Baecke et al.’s (1982) scale in the present study was .70.

In the present study, respondents could record up to four different exercise activities (as in Sternfeld, Ainsworth, & Quesenberry, 1999), that is, tennis, squash, aerobic dance and football. Each exercise score was derived by multiplying its intensity code by a frequency code corresponding to the number of hours per week and months per year it was practiced (see Baecke et al, 1982). For example, one person may play football 1 to 2 hours per week, 4 to 6 months of the year. The intensity code assigned to football is 1.76, 1-2 hours per week is assigned the code 1.5, and 4-6 months per year has the code 0.42. These are then multiplied to obtain the exercise score for football: 1.76 x 1.5 x 0.42 = 1.11. Then the scores for each activity are summed and divided by the number of activities performed. The resulting scores are then converted into an exercise index score that ranges between 1 (no exercise) to 5 (very high level of exercise). This is achieved by assigning exercise scores of 0 the value of 1, scores between .01 and 4 the value of 2, scores between 4 and 8 the value of 3, scores between 8 and 12 the value of 4, and scores greater than 12 the value of 5.

An example of how the leisure-time index follows: A woman may believe that she often (assigned the score of 4) watches television, she seldom (given the score of 2) walks, she never (assigned the score of 1) cycles, and that she walks/cycles less than five minutes per day (given a score of 1) to and from work and the shops. Baecke et al.’s (1982) formula for calculating the leisure-time index is: [(6 - amount of television watched during leisure-time) + amount of walking during leisure-time + amount of cycling performed during leisure-time + minutes per day of walking and/or cycling to and from work and shopping] / 4. Therefore, in the aforementioned example, the leisure-time index would be: [(6-4) + 2 + 1 + 1] / 4 = 1.5.
To test the exercise and well-being model in Figure 1, the exercise index was transformed into metabolic equivalent hours per week (MET hours per week). This procedure has been used in several other studies (e.g. Sternfeld et al., 1999) because it standardises exercise intensity, frequency and duration across different activities. One MET is the oxygen consumption required at rest, or approximately 1 kcal/kg/hr. MET values were assigned to each reported type of exercise based on Ainsworth et al.’s (2000) tables. As an example, doubles tennis is assigned a MET intensity value of 5. To derive the MET hours per week score, the MET value is multiplied by codes assigned to the frequency and the duration of doubles tennis played per week. The total exercise participation in MET hours per week is derived by summing the individual MET hours per week scores across all types of exercise assessed.

In order to examine differences between different exercise levels in the three components of well-being (i.e., physical, work-related and global), the exercise index was used to create exercise quintiles (0-20th quintile = ex-group 1, n = 63; 20-40th quintile = ex-group 2, n = 58; 40-60th quintile = ex-group 3, n = 62; 60-80th quintile = ex-group 4, n = 62; 80-100th quintile = ex-group 5, n = 59). For the supplementary analyses using total physical activity rather than exercise, the combined physical activity scores across domains were divided into physical activity quintiles (pa-group 1: n = 67, 2: n = 55, 3: n = 59, 4: n = 62, 5: n = 58).

Data Analyses

Structural equation modelling analysis (SEM) was employed, using EQS 5.7, to test the hypothesised links between exercise and the global and domain-specific indicators of well-being and the self. Missing data were treated using listwise deletion. In order to evaluate the adequacy of the model, several indexes of fit were examined: the chi square (χ^2) value, the Comparative Fit Index (CFI), the Non-Normed Fit Index (NNFI), the Standardised Square
Relationships between exercise and well-being

Root Mean Residual (SRMR), and the Root Mean Square Error of Approximation (RMSEA) with its 90% confidence interval (CI) (for a description of these indices see Hair, Anderson, Tatham, & Black, 1998). A simulation study by Hu and Bentler (1999) showed that a good model fit is achieved when the NNFI and the CFI values are close to or above .95, the SRMR is close to or below .08, and the RMSEA is close to or below .06. Furthermore, a close fit of the model to the intended population is implied when the lower bound of the 90% CI of the RMSEA includes the value of .05. In addition, MANOVA tests were carried out to examine differences between the exercise groups in the three well-being components (i.e., physical, work-related and global). Similar structural equation modelling and MANOVA analyses were carried out for physical activity.

Results

Descriptive Statistics

The means of exercise and physical activity levels for the total sample and for each of the exercise and physical activity groups are provided in Table 1. Further, the mean levels of the total sample for the physical well-being constructs were: Physical self-worth: 2.54 (SD = .41; observed range: 1.50-3.50); physical satisfaction: 3.17 (SD = .75; 1.17-5.00). For work-related well-being, the mean levels were: Job satisfaction: 7.09 (SD = 1.80; 1-10); nervousness: 1.79 (SD = .72; 1-4.50); fatigue: 2.23 (SD = .83; 1-5); relaxation: 2.79 (SD = .77; 1-4.50), and enthusiasm: 2.78 (SD = .76; 1-4.83). Finally, for global well-being, the mean levels of life satisfaction: 4.61 (SD = 1.27; 1-7) and for self-esteem the mean score was: 2.95 (SD = .60; 1-4).

Relationships between Exercise and Components of Mental Well-Being

Structural equation modelling (SEM) was used to examine the fit of the data to the hypothesised model (see Figure 1). The data were analysed using maximum likelihood
analysis. Almost all variables in the model were measured with latent factors which were
represented through their indicator items (the latter are not presented in Figure 1 for
presentation simplicity reasons). The only exception was exercise participation which was not
measured with a latent factor because it was a single-item variable.

The measurement part of the hypothesised model fit the data relatively well: \(\chi^2 \) (449) =
724.96 \(p < .001 \); NNFI = .93; CFI = .94; SRMR = .06; RMSEA = .05 (.04 - .05). Inspection
of the standardised residual matrix and the modification indices suggested that the deletion of
two indicator items, one each from the job satisfaction and enthusiasm scales would improve
the model fit. These items were deleted and the re-estimated measurement model had a very
good fit: \(\chi^2 \) (390) = 594.61 \(p < .001 \); NNFI = .95; CFI = .95; SRMR = .06; RMSEA = .04
(.04 - .05). The deletion of problematic item indicators is regarded as a legitimate process in
measurement evaluation as it retains the general structure of the original hypothesised factor
model, but with only the best available indicators (Hofmann, 1995). Adding the structural
model to the measurement model produced the model in Figure 1 which had a good fit: \(\chi^2 \)
(423) = 647.67 \(p < .001 \); NNFI = .94; CFI = .95; SRMR = .07; RMSEA = .05 (.04 - .05).

All hypothesised parameters in the model were significant and the standardised loadings
were relatively high \(M = .74; SD = .13 \). There was support for direct relationships between
exercise and physical self-worth \((\beta = .32) \), and exercise and physical satisfaction \((\beta = .14) \). In
addition, exercise was directly related to enthusiasm at work \((\beta = .18) \). Physical self-worth
was also directly associated with enthusiasm at work \((\beta = .22) \). Furthermore, physical
satisfaction was related to physical self-worth \((\beta = .62) \) and self-esteem \((\beta = .18) \). Support
was also found for all hypothesised indirect relationships. Specifically, exercise showed
indirect and significant relationships with a) self-esteem through physical self-worth \((\beta = .16) \),
b) life satisfaction through physical satisfaction (β = .18), and c) job satisfaction through enthusiasm at work (β = .18).

The model with total physical activity, rather than exercise as the independent variable, had very similar path coefficients and fit indices: χ² (424) = 653.11 (p < .001); NNFI = .94; CFI = .95; SRMR = .07; RMSEA = .05 (.04 - .05). The only difference was that the path between physical activity and physical satisfaction was non-significant (b = .06).

Differences between Exercise Quintiles in Well-Being Components

Three MANOVA's were conducted to examine the hypothesis that significant differences would exist between exercise quintiles (ex-groups 1 to 5) in the three components of well-being. The significance level for each MANOVA test was set at p = .016 using the Bonferroni adjustment to control for Type I error. The first MANOVA examining the differences between exercise groups (ex-groups 1-5) in physical well-being was significant: Pillai’s criterion = .200; F (8, 596) = 8.29; p < .001. Significant univariate differences existed among exercise groups in both physical self-worth and physical satisfaction (see Table 2). All differences were in the expected direction with participants engaging in more exercise generally reporting greater levels of physical well-being. Specifically, a post hoc Tukey test revealed significant differences in physical self-worth existed between ex-groups 1 and 3 (p < .05), between ex-groups 1 and 4 (p < .001), between ex-groups 1 and 5 (p < .001), between ex-groups 2 and 4 (p < .001), and finally between ex-groups 2 and 5 (p < .001). A similar pattern was found for physical satisfaction. The significant differences were located between ex-groups 1 and 3 (p < .05), between ex-groups 1 and 4 (p < .001), between ex-groups 1 and 5 (p < .001), between ex-groups 2 and 4 (p < .001), between ex-groups 2 and 5 (p < .001), between ex-groups 3 and 4 (p < .05), and between ex-groups 3 and 5 (p < .05).

The second MANOVA, which examined differences between exercise groups in work-related well-being, was also significant: Pillai’s criterion = .153; F (20, 1184) = 2.35; p < .001.
However, significant univariate differences were found only for enthusiasm at work ($p < .001$), with a trend for nervousness at work ($p = .07$). Specifically, enthusiasm at work increased with increasing levels of exercise (see Table 3). Univariate analyses revealed that the significant differences in enthusiasm at work were located between ex-groups 1 and 5 ($p < .05$), between ex-groups 2 and 3 ($p < .05$), between ex-groups 2 and 4 ($p < .01$), and between ex-groups 2 and 5 ($p < .001$). Finally, a MANOVA was carried out to examine differences between the exercise groups in global well-being. However, this MANOVA was not significant: Pillai's criterion = .046; $F(8, 596) = 1.736; p > .05$ (see Table 4).

Additional analyses using physical activity instead of exercise as the independent variable revealed similar results, as both MANOVA's for physical well-being and work-related well-being were significant (Physical well-being: Pillai's criterion = .133; $F(8, 590) = 5.25; p < .001$; Work-related well-being: Pillai's criterion = .193; $F(20, 1172) = 2.97; p < .001$). Significant univariate differences in physical well-being existed in both physical self-worth and physical satisfaction. Specifically, post-hoc tests revealed that, for physical self-worth, the differences were located between pa-groups 1 and 3 ($p < .05$), pa-groups 1 and 4 ($p < .01$), pa-groups 1 and 5 ($p < .001$), and pa-groups 2 and 5 ($p < .01$), with those reporting higher levels of physical activity also reporting higher levels of physical self-worth. For physical satisfaction, the univariate analyses revealed that differences were located between pa-groups 1 and 4 ($p < .01$), pa-groups 1 and 5 ($p < .001$), pa-groups 2 and 4 ($p < .05$), and pa-groups 2 and 5 ($p < .001$), with those being more physically active reporting higher levels of satisfaction with their physical selves.

For work-related well-being, univariate differences were found for enthusiasm and relaxation at work. Post-hoc tests revealed that the significant differences in enthusiasm at work were located between pa-groups 1 and 4 ($p < .01$), pa-groups 1 and 5 ($p < .001$), pa-groups 2 and 4 ($p < .05$), pa-groups 2 and 5 ($p < .001$), and pa-groups 3 and 5 ($p < .01$), with
Relationships between exercise and well-being

participants engaged in higher levels of physical activity feeling more enthusiastic at work.

For relaxation, the only significant difference between the groups was located between pa-
groups 4 and 5 ($p < .05$), with the most physically active group feeling most relaxed at work.

In contrast to the findings pertaining to exercise quintiles, it was also revealed that the
physical activity groups differed significantly in global well-being: Pillai's criterion $= .072$; F
($8, 590) = 2.749; p < .01$. The univariate analyses revealed that this was the case for life
satisfaction with significant differences located between pa-groups 2 and 5 ($p < .05$) and pa-
groups 3 and 5 ($p < .05$), again with the most physically active group demonstrating the
highest level of life satisfaction.2

Discussion

In the present study, a multidimensional and hierarchically organised SEM model was
presented in order to examine the interrelationships between exercise (as well as total physical
activity) and three components of well-being in corporate employees. The results provided
support for the organisational structure of the model which represents a first attempt at
simultaneously specifying relationships between exercise and well-being variables from
several domains of employees’ lives. Thus, the present study extends previous studies which
examined the relationships between exercise and isolated indicators of employee well-being.
Hence, the model may help to inform the choice of well-being indicators in future research
examining the relationship between exercise (as well as total physical activity) and well-being
of employees.

The model specified direct and indirect links between exercise and mental well-being.

All of the specified direct relationships were supported. With regard to the relationship
between exercise and physical well-being, a moderate sized direct path ($\beta = .32$) was found
between exercise and physical self-worth. This finding is in agreement with research findings
across a range of populations which indicate the efficacy of exercise in enhancing physical
self-worth (Fox, 2000). Fox’s (2000) review suggested that weight training and certain types of aerobic activity are the most effective in improving physical self-perceptions. It would be interesting if future research tested the effects of different types of activity in physical self-perceptions in the workplace.

Although exercise was also significantly related to physical satisfaction in the model, the size of the link was rather small ($\beta = .14$). Several studies (e.g., King, Taylor, Haskell & DeBusk, 1989; Yarnold, Stille, & Martin, 1995) have found support for the positive effect of exercise on measures of health and appearance, employing indicators similar to the physical satisfaction items used in the present study. However, it is possible that satisfaction with health, appearance, fitness or shape/body build are differentially related to exercise and that aggregate measures of physical satisfaction, such as the one used in the present study, may mask such diverse relationships. Future research should examine the employee characteristics that determine the importance placed by individuals on different indicators of physical satisfaction.

Exercise participation was directly linked with enthusiasm at work with exerciser employees reporting being more enthusiastic. This finding is consistent with previous empirical studies in the work context (e.g. Daley & Parfitt, 1996), and with generic reviews and meta-analyses on exercise and affect (e.g. Biddle, 2000). Positive affective states at work have been found to reduce absenteeism (Pelled & Xin, 1999) and increase organisational spontaneity (George & Brief, 1992). If indeed exercise promotes positive affective states at work, the case for exercise promotion in the workplace is strengthened. Given the implications of this finding, future research should employ quasi-experimental (i.e., field-based) designs to examine whether any dose-response relationships exist between exercise and enthusiasm at work.
The findings from the present study are the first to suggest that physical self-worth is significantly related to enthusiasm at work. This finding extends those by Sonstroem and Potts (1996) and Van de Vliet et al. (2002) into the work context. It illustrates that independent of global self-esteem, physical self-worth may have emotional adjustment properties by enhancing positive affect. In other words, it is possible that feeling physically attractive, strong or in good physical condition, whichever is more pertinent to the individual, may make the individual to feel more active, happier and more enthusiastic at work. Interestingly, this finding could indicate the importance of self-presentation in the work context. Exercise activities that are more strongly related to physical self-perceptions, such as weight training (Fox, 2000), may be particularly important to implement in the workplace. Future studies should use longitudinal experimental designs to examine whether changes in physical self-worth cause changes in enthusiasm and positive affect at work.

The model proposed in the study also specified some indirect paths between exercise and more global indicators of well-being in the work and general life domains. All these paths were significant, providing an indication of the mediating variables that may explain the links between exercise and work-related and global indicators of employee well-being. Specifically, one such mediating variable was physical self-worth through which exercise was related to global self-esteem. This finding supports Sonstroem and Morgan’s (1989) Exercise and Self-Esteem Model which argues that exercise can result in small increases in global self-esteem. High self-esteem is important because it can act as a buffer against the deleterious effects of stress (Rector & Roger, 1996), making people more resistant to stress-related illnesses and absenteeism. However, apart from individual benefits, increased employee self-esteem also has implications for the success of corporations through improved job performance (Judge & Bono, 2001). As a consequence, behaviours such as exercise that are
shown to be related to self-esteem should be promoted in the workplace as these can benefit
the individual and the organisation as a whole.

The results of the present study also supported the hypothesis that exercise is indirectly
related to job satisfaction. Past research has found positive and significant relationships
between exercise and job satisfaction (e.g. Daley & Parfitt, 1996; Kirkcaldy et al., 1994).
However, these studies did not indicate why exercise may be related to job satisfaction. In
contrast, the findings of the present study revealed that enthusiasm at work is a possible
mediator in the relationship between exercise and job satisfaction. From a theoretical point of
view, this finding makes sense as positive affect is one of the most important predictors of job
satisfaction (Weiss et al., 1999), and exercise has the ability to enhance affect (Biddle, 2000).
From a practical point of view, our finding suggests that exercise programmes focused on
enhancing positive affect at work may also help participants feel more satisfied at work. The
conditions (e.g., motivational factors) under which physical activity and exercise may foster
positive affect in the workplace should be examined by future research. Furthermore, due to
the cross-sectional design of the present study, future longitudinal research should aim to
tease out the cross-lagged paths linking exercise, positive affect, and job satisfaction.

The findings from the present study also illustrated that exercise is indirectly related to
how satisfied employees feel with their lives in general and that physical satisfaction may be
one of the mediating links explaining this relationship. Indeed, this finding supports that of
Rejeski et al. (2001) who found that satisfaction with physical functioning and appearance
served as significant mediators in the relationship between physical activity and subjective
well-being. For many people, bodily function and appearance are important, and if exercise
provides them with the means to achieve such goals, their life satisfaction may be enhanced.
As Little (1989) argued, “well-being will be enhanced to the extent that individuals are
engaged in personal projects that are meaningful, well-structured, supported by others, not
unduly stressful, and which engender a sense of efficacy” (p. 20). Therefore, future research should establish the optimal conditions for achieving the psychological benefits of exercise, by examining the effects of different exercise settings, exercise types, and people's perceived social support for exercise.

The present study also sought to examine whether employees reporting different levels of exercise and physical activity would differ in three components of mental well-being. To this end, exercise (and physical activity) quintiles were created. The mean levels of exercise/physical activity engagement for the exercise and physical activity quintiles revealed a wide spread of scores. Hence, it appears that the participants represented fairly well the continuum of sedentary to regular exercisers. This is further shown by comparing our results with those reported in the studies by van Baak et al. (2003) and Philippaerts, Westerterp and Lefevre (2001), both of which employed Baecke et al.’s (1982) questionnaire. Specifically, the present study showed that those in the 0-20th and 20-40th exercise quintiles reported less exercise and leisure-time physical activity compared to the obese participants in the van Baak et al. study. Furthermore, those individuals in the first two quintiles reported less total physical activity than those reported by van Baak et al. (2003) and Philippaerts et al. (2001). In contrast, participants in the upper quintiles (ex-groups 3-5) reported engaging in more exercise and physical activity compared to the participants in the other two studies. We believe that it is a strength of the present study that participants with noticeably different levels of exercise and physical activity were included.

The results of the MANOVA analyses using exercise as the independent variable revealed that the exercise quintiles differed significantly in physical well-being and enthusiasm at work with those participants reporting higher levels of exercise generally having a more favourable well-being profile. A closer inspection of these results reveal that the indicators of well-being did not differ significantly between the two most inactive groups,
However, significant differences emerged between the 20-40th and the 40-60th exercise quintiles. These results therefore suggest that even moderate amounts of structured exercise are associated with feeling more enthusiastic at work and feeling better about one’s physical self.

Likewise, the MANOVA findings using total physical activity as the independent variable demonstrated that the significant differences in physical well-being and enthusiasm emerged between the 40-60th and the 60-80th quintile. Again, this indicates that moderate levels of physical activity may be enough for employees to feel better about their physical selves, more enthusiastic at work and report increased levels of life satisfaction. This pattern of results was not evident for relaxation at work. The finding that even moderate amounts of physical activity is related with positive self-perceptions, physical satisfaction and enthusiasm corroborates previous findings in the literature (Biddle, 2000; Brown et al., 1995; King, Taylor & Haskell, 1993; Rejeski et al., 2001). The results by Rejeski et al. (2001) also demonstrated that increases in subjective well-being through physical activity were not due to changes in fitness status, implying that such increases could be achieved through moderate physical activity. Clearly, our results have implications for physical activity promotion practices at the workplace. Usually, structured exercise programmes at the workplace are of relatively high intensity. However, these programmes, have been criticised for attracting employees who are already physically active (Shephard, 1999) and not those in greater need (i.e. sedentary employees) who may perceive such programmes to be of too high intensity. If, indeed, moderate physical activity can induce positive changes in well-being, corporations should aim to implement programmes that support lifestyle physical activity (e.g., active commuting to work) as well as exercise, thereby making these programmes attractive to a wider range of employees.
It is interesting to note the differences and similarities in the results using exercise and physical activity as the independent variables. Specifically, in the SEM analyses the fit indices between the two models were very similar. The only difference was that the path between physical activity and physical satisfaction was non-significant. This result seems to indicate that engaging in incidental activity is not related to the satisfaction people feel with their health, weight, appearance and shape or body build. However, no firm conclusions can be made at this stage, as the MANOVA findings, in contrast to the SEM results, showed that the physical activity groups did differ in physical satisfaction. In contrast, the results for exercise were more clear-cut because exercise participation was associated with physical satisfaction in both the SEM and MANOVA analyses.

The second difference between the exercise and physical activity results was that there were significant differences in global well-being among the physical activity groups but not among the exercise groups. At this point, there are no clear logical explanations as to why such differences emerged. However, this issue is worthy of more research attention, particularly as it has implications for activity and mental health promotion policies.

There are some limitations associated with the present study. First, the response rate was relatively low, although previous research has established that web-based surveys have in general lower response rates than mail-out surveys (Solomon, 2001). One might argue that the low response rate might have resulted in a non-representative sample. However, this is not very likely as we identified distinct exercise/physical quintile groups with significant differences in mental well-being. Secondly, due to the cross-sectional nature of this study, causal inferences cannot be made. Future research should aim to employ longitudinal experimental designs to examine whether exercise participation affects the global well-being of employees and whether over time there are reciprocal effects. It should be acknowledged that SEM cannot be used to make causal inferences with cross-sectional data. Although we do
not make causal claims in this study, our hypotheses regarding the direct and indirect effects
in our models were based on relevant theory (e.g., Sonstroem & Morgan, 1989; Diener et al.,
1999) and research (e.g., Weiss et al., 1999).

In sum, the present study used a comprehensive and theoretically-based approach to
examine exercise and well-being in employees. It is hoped that findings from the present
study may facilitate our understanding of the role of exercise participation and physical
activity on the emotional and cognitive functioning of corporate employees. Our findings
provide support for the need to promote exercise and lifestyle physical activity as a means of
enhancing the positive well-being of corporate employees.
References

Footnote

1. We included only enthusiasm in the model presented in Figure 1, because positive affect is more likely to relate to job satisfaction (Weiss et al., 1999), and because enthusiasm has conceptually similar items with vigour which is consistently related to exercise behaviour (Biddle, 2000).

2. One of the reviewers requested the examination of sex differences. Although this was not the purpose of the study, we considered the role of sex when examining the differences in well-being among the different quintile groups. Separate MANOVA analyses for each gender revealed similar findings with the MANOVA’s presented in the Results, with a few exceptions. Specifically, for females, there was no significant difference among the exercise quintiles in work-related well-being. However, when examining differences in work-related well-being in the same sex group using total physical activity, significant differences were found. Specifically, the pa-groups differed in all job affect variables with more physically active groups reporting more favourable levels of affect. The role of sex could not be examined in the SEM because the sample was not large enough to conduct multi-sample analysis.
Table 1

Descriptive Statistics for Exercise and Physical Activity Levels of the total sample and quintiles

<table>
<thead>
<tr>
<th></th>
<th>Total sample</th>
<th>Ex-groups 1-5</th>
<th>Pa-groups 1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(M (SD))</td>
<td>(M (SD))</td>
<td>(M (SD))</td>
</tr>
<tr>
<td>Work index</td>
<td>2.28 (.29)</td>
<td>2.36</td>
<td>2.22</td>
</tr>
<tr>
<td></td>
<td>(.32)</td>
<td>(.28)</td>
<td>(.27)</td>
</tr>
<tr>
<td>Exercise index</td>
<td>2.76 (1.19)</td>
<td>1.14</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>(.40)</td>
<td>(.00)</td>
<td>(.37)</td>
</tr>
<tr>
<td>Leisure-time index</td>
<td>2.87 (.70)</td>
<td>2.63</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td>(.59)</td>
<td>(.54)</td>
<td>(.69)</td>
</tr>
<tr>
<td>Total PA index</td>
<td>7.93 (1.59)</td>
<td>6.14</td>
<td>6.84</td>
</tr>
<tr>
<td></td>
<td>(.75)</td>
<td>(.65)</td>
<td>(.84)</td>
</tr>
</tbody>
</table>

Notes. Ex-group and pa-group 1 = 0-20th quintile, 2 = 20-40th quintile, 3 = 40-60th quintile, 4 = 60-80th quintile, 5 = 80-100th quintile.

The possible range of scores for the work-, exercise-, and leisure-time index is 1 to 5, whereas for the total PA index is 3 to 15.
Table 2

MANOVA Results for Exercise (df = 4, 298) and Physical Activity (df = 4, 295) Quintiles in Physical Well-Being Measures

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>Physical self-worth</td>
<td>2.34<sub>a</sub></td>
<td>.05</td>
<td>2.38<sub>a</sub></td>
<td>.05</td>
<td>2.56<sub>b</sub></td>
<td>.05</td>
<td>2.70<sub>b</sub></td>
</tr>
<tr>
<td>Physical satisfaction</td>
<td>2.77<sub>a</sub></td>
<td>.09</td>
<td>2.90<sub>a</sub></td>
<td>.09</td>
<td>3.12<sub>b</sub></td>
<td>.09</td>
<td>3.50<sub>c</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>Physical self-worth</td>
<td>2.35<sub>a</sub></td>
<td>.35</td>
<td>2.45<sub>a</sub></td>
<td>.44</td>
<td>2.55<sub>b</sub></td>
<td>.42</td>
<td>2.63<sub>b</sub></td>
</tr>
<tr>
<td>Physical satisfaction</td>
<td>2.93<sub>a</sub></td>
<td>.69</td>
<td>2.93<sub>a</sub></td>
<td>.86</td>
<td>3.15<sub>a</sub></td>
<td>.64</td>
<td>3.35<sub>b</sub></td>
</tr>
</tbody>
</table>

Note. Quintiles with the same subscripts in the same row do not differ significantly at p<.05
Table 3

MANOVA Results for Exercise (df = 4, 297) and Physical Activity (df = 4, 294) Quintiles in Work-Related Well-Being Measures

<table>
<thead>
<tr>
<th>Exercise quintiles</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td>M</td>
</tr>
<tr>
<td>Job satisfaction</td>
<td>7.04a</td>
<td>.24</td>
<td>6.93a</td>
<td>.23</td>
<td>7.30a</td>
<td>.24</td>
<td>7.02a</td>
</tr>
<tr>
<td>Nervousness</td>
<td>1.93a</td>
<td>.09</td>
<td>1.73a</td>
<td>.09</td>
<td>1.60a</td>
<td>.09</td>
<td>1.92a</td>
</tr>
<tr>
<td>Fatigue</td>
<td>2.35a</td>
<td>.11</td>
<td>2.21a</td>
<td>.10</td>
<td>2.12a</td>
<td>.11</td>
<td>2.23a</td>
</tr>
<tr>
<td>Relaxation</td>
<td>2.60a</td>
<td>.10</td>
<td>2.75a</td>
<td>.10</td>
<td>2.83a</td>
<td>.10</td>
<td>2.81a</td>
</tr>
<tr>
<td>Enthusiasm</td>
<td>2.65a</td>
<td>.09</td>
<td>2.42a</td>
<td>.09</td>
<td>2.82b</td>
<td>.10</td>
<td>2.95b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical activity quintiles</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job satisfaction</td>
<td>6.62a</td>
<td>1.82</td>
<td>6.92a</td>
<td>1.67</td>
<td>7.08a</td>
<td>1.74</td>
<td>7.35a</td>
</tr>
<tr>
<td>Nervousness</td>
<td>1.83a</td>
<td>.79</td>
<td>1.93a</td>
<td>.75</td>
<td>1.63a</td>
<td>.59</td>
<td>1.80a</td>
</tr>
<tr>
<td>Fatigue</td>
<td>2.42a</td>
<td>.97</td>
<td>2.24a</td>
<td>.80</td>
<td>2.22a</td>
<td>.72</td>
<td>2.22a</td>
</tr>
<tr>
<td>Relaxation</td>
<td>2.69ab</td>
<td>.77</td>
<td>2.67ab</td>
<td>.85</td>
<td>2.94ab</td>
<td>.72</td>
<td>2.62a</td>
</tr>
<tr>
<td>Enthusiasm</td>
<td>2.50a</td>
<td>.67</td>
<td>2.58a</td>
<td>.72</td>
<td>2.64a</td>
<td>.71</td>
<td>2.98b</td>
</tr>
</tbody>
</table>

Note. Quintiles with the same subscripts in the same row do not differ significantly at p < .05
Table 4

MANOVA Results for Exercise (df = 4, 298) and Physical Activity (df = 4, 295) Quintiles in Global Well-Being Measures

<table>
<thead>
<tr>
<th>Quintiles</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td>F</td>
<td>p</td>
</tr>
<tr>
<td>Self-esteem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.80a</td>
<td>.08</td>
<td>2.92a</td>
<td>.08</td>
<td>2.94a</td>
<td>.08</td>
</tr>
<tr>
<td>Life satisfaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.15a</td>
<td>.16</td>
<td>4.46ab</td>
<td>.16</td>
<td>4.77ab</td>
<td>.16</td>
<td>4.81b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.84</td>
<td>.005</td>
<td>4.44ab</td>
<td>1.30</td>
<td>4.31a</td>
</tr>
</tbody>
</table>

Note. Quintiles with the same subscripts in the same row do not differ significantly at $p<.05$
Figure Caption

Figure 1. Structural equation modelling of the relationships between exercise and components of mental well-being: $\chi^2 (423) = 647.67 \ (p<.001)$; NNFI = .94; CFI = .95; SRMR = .07; RMSEA = .05 (.04 - .05).
Note: Only direct paths are presented.