ePrints Repository

Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies

Timpe, Jennifer M and Stamataki, Zania and Jennings, Adam and Hu, Ke and Farquhar, Michelle J and Harris, Helen J and Schwarz, Anne and Desombere, Isabelle and Roels, Geert Leroux and Balfe, Peter and McKeating, Jane A (2008) Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology (Baltimore, Md.), 47 (1). pp. 17-24. ISSN 1527-3350

Loading
This item has no file(s) to display.

Identification Number/DOI: 10.1002/hep.21959

Hepatitis C virus (HCV) infection of Huh-7.5 hepatoma cells results in focal areas of infection where transmission is potentiated by cell-cell contact. To define route(s) of transmission, HCV was allowed to infect hepatoma cells in the presence or absence of antibodies that neutralize cell-free virus infectivity. Neutralizing antibodies (nAbs) reduced cell-free virus infectivity by >95% and had minimal effect(s) on the frequency of infected cells in the culture. To assess whether cell-cell transfer of viral infectivity occurs, HCV-infected cells were cocultured with fluorescently labeled naïve cells in the presence or absence of nAbs. Enumeration by flow cytometry demonstrated cell-cell transfer of infectivity in the presence or absence of nAbs and immunoglobulins from HCV(+) patients. The host cell molecule CD81 and the tight junction protein Claudin 1 (CLDN1) are critical factors defining HCV entry. Soluble CD81 and anti-CD81 abrogated cell-free infection of Huh-7.5 and partially inhibited cell-cell transfer of infection. CD81-negative HepG2 hepatoma cells were resistant to cell-free virus infection but became infected after coculturing with JFH-infected cells in the presence of nAb, confirming that CD81-independent routes of cell-cell transmission exist. Further experiments with 293T and 293T-CLDN1 targets suggested that cell-cell transmission is dependent on CLDN1 expression. Conclusion: These data suggest that HCV can transmit in vitro by at least two routes, cell-free virus infection and direct transfer between cells, with the latter offering a novel route for evading nAbs.

Type of Work:Article
Date:2008 (Publication)
School/Faculty:Schools (1998 to 2008) > School of Medicine
Department:Immunity and Infection
Subjects:R Medicine (General)
QR355 Virology
QR180 Immunology
QR Microbiology
Institution:University of Birmingham
Copyright Holders:the American Association for the Study of Liver Diseases
ID Code:480
Refereed:YES
Local Holdings:
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page