ePrints Repository

Steady-State movement related potentials for brain–computer interfacing

Miall, R. Chris (2009) Steady-State movement related potentials for brain–computer interfacing. IEEE Transactions on Biomedical Engineering, 56 (8). pp. 2104-2113.

Loading
PDF (742Kb)

URL of Published Version: http://dx.doi.org/10.1109/TBME.2009.2021529

Identification Number/DOI: 10.1109/TBME.2009.2021529

An approach for brain-computer interfacing (BCI) by analysis of steady-state movement related potentials (ssMRPs) produced during rhythmic finger movements is proposed in this paper. The neurological background of ssMRPs is briefly reviewed. Averaged ssMRPs represent the development of a lateralized rhythmic potential, and the energy of the EEG signals at the finger tapping frequency can be used for single-trial ssMRP classification. The proposed ssMRP-based BCI approach is tested using the classic Fisher's linear discriminant classifier. Moreover, the influence of the current source density transform on the performance of BCI system is investigated. The averaged correct classification rates (CCRs) as well as averaged information transfer rates (ITRs) for different sliding time windows are reported. Reliable single-trial classification rates of 88%-100% accuracy are achievable at relatively high ITRs. Furthermore, we have been able to achieve CCRs of up to 93% in classification of the ssMRPs recorded during imagined rhythmic finger movements. The merit of this approach is in the application of rhythmic cues for BCI, the relatively simple recording setup, and straightforward computations that make the real-time implementations plausible.

Type of Work:Article
Date:August 2009 (Publication)
School/Faculty:Colleges (2008 onwards) > College of Life & Environmental Sciences
Department:School of Psychology
Subjects:BF Psychology
Institution:University of Birmingham
Copyright Holders:Institute of Electrical and Electronics Engineers
ID Code:557
Refereed:YES
Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page