A study of the reactions of trifluoromethyl sulphur pentafluoride, SF$_5$CF$_3$, with several positive ions of atmospheric interest

C. Atterbury, R.A. Kennedy, C.A. Mayhew and R.P. Tuckett

DOI: 10.1039/b102504j

This is the author’s version of a work that was accepted for publication in *Phys. Chem. Chem. Phys.* Changes resulting from the publishing process, such as editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. A definitive version was subsequently published in the reference given above. The DOI number of the final paper is also given above.

Professor Richard Tuckett (University of Birmingham) / July 2011
A study of the reactions of trifluoromethyl sulphur pentafluoride, SF₅CF₃, with several positive ions of atmospheric interest

Clair Atterbury, Richard A. Kennedy, Chris A. Mayhew* and Richard P. Tuckett

School of Chemistry, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, UK B15 2TT.

* C.Mayhew@bham.ac.uk

Abstract

An investigation of the bimolecular reactions of several positive ions of atmospheric interest, H₃O⁺, NO⁺, NO₂⁺, O₂⁺, H₂O⁺, N₂O⁺, O⁺, CO₂⁺, CO⁺, N⁺, and N₂⁺, with the greenhouse gas SF₅CF₃ is reported. The thermal rate coefficients and ion product distributions have been determined at 300 K using a selected ion flow tube. H₂O⁺, NO₂⁺, and NO⁺ are found to be unreactive. The reaction with O₂⁺ proceeds with a rate coefficient significantly less than the capture value via chemical routes, in which bonds are broken and formed. The other reagent ions, H₂O⁺, N₂O⁺, O⁺, CO₂⁺, CO⁺, N⁺, and N₂⁺ react with SF₅CF₃ with reaction rate coefficients close to or at the capture values. With the exception of the reaction with H₂O⁺, all these efficient reactions occur by dissociative charge transfer, with CF₃⁺ and SF₃⁺ being the dominant product ions. CF₃⁺ forms by direct cleavage of the S-C bond in SF₅CF₃⁺, and SF₃⁺ probably from dissociation of (SF₄⁺)* following intramolecular rearrangement within the lifetime of (SF₅CF₃⁺)*. For H₂O⁺, the observed ion branching ratios suggest that the reaction proceeds via a chemical pathway. The reactions of SF₅CF₃ with cations will destroy this molecule in the upper atmosphere.
1. Introduction

The recent detection of a new atmospheric trace gas in the stratosphere with a very high global warming potential, trifluoromethyl sulphur pentafluoride (SF$_5$CF$_3$), has resulted in a number of studies investigating its photoionisation and electron attachment properties. From the results of the photoionisation study, it has been deduced that the SF$_5$-CF$_3$ bond dissociation energy is 4.1 ± 0.5 eV. On the basis of this value, it has been asserted that SF$_5$CF$_3$ will not be broken down by UV photodissociation in the stratosphere. This conclusion is supported by the height profile of SF$_5$CF$_3$ through the stratosphere. This leads to the question as to whether there are any reaction processes in the stratosphere or the ionosphere which could provide an atmospheric loss mechanism for SF$_5$CF$_3$. The electron attachment study shows that the molecule will be destroyed in the regions of the ionosphere where free electrons exist, providing an upper limit to the atmospheric lifetime of SF$_5$CF$_3$ of ca. 1000 years. Other competitive routes in the ionosphere leading to the possible destruction of SF$_5$CF$_3$ are reactions with ions. Here we report the first gas-phase study of the reactions of SF$_5$CF$_3$ with several positive ions found in the ionosphere, specifically (in order of increasing recombination energy) H$_3$O$^+$, NO$_2^+$, NO$_2^+$, O$_2^+$, H$_2$O$^+$, N$_2$O$^+$, O$^+$, CO$_2^+$, CO$^+$, N$^+$, and N$_2^+$. This information provides details on the atmospheric fate of SF$_5$CF$_3$.

Whilst the major stimulus for this study comes from its application to the atmospheric ion chemistry of SF$_5$CF$_3$, the ion chemistry of a derivative of SF$_6$ is also of interest. SF$_6$ is used in reactive plasmas. The rates and products of reactions in plasmas containing SF$_6$ are either not known or are poorly understood. Studies of the reactions of ions with SF$_6$ and its derivatives can contribute towards a better understanding of the complex chemistry occurring in plasmas used for industrial purposes.
2. Experimental

A selected ion flow tube (SIFT) was used to measure rate coefficients and product ion branching ratios of the reactions. The SIFT apparatus and its mode of operation have been described in detail previously.5,6 In brief, the reagent ions were generated in an electron impact high-pressure ion source containing an appropriate gas (N\textsubscript{2} for N\textsubscript{2}+ and N+, CO for CO+, CO\textsubscript{2} for CO\textsubscript{2}+, N\textsubscript{2}O for N\textsubscript{2}O+, NO+ and O+, H\textsubscript{2}O for H\textsubscript{2}O+ and H\textsubscript{3}O+, O\textsubscript{2} for O\textsubscript{2}+, and NO\textsubscript{2} for NO\textsubscript{2}+). The reagent ions were mass selected using a quadrupole mass filter, injected into a 300 K helium carrier gas at a pressure of \textit{ca.} 0.5 Torr, transported along the flow tube and detected by a downstream quadrupole mass spectrometer detection system. SF\textsubscript{5}CF\textsubscript{3} was added in controlled amounts to the ion swarm/carrier gas. The loss of the reagent ions and the appearance of product ions were monitored by the detection system. Relaxed resolution on the quadrupole mass spectrometer was used to determine the branching ratios in order to minimize mass discrimination effects. The reaction rate coefficients and ion product distributions were then determined in the usual way,5-7 and are considered to be accurate to \(\pm 20\%\).

The high pressure of the gases used in the ionisation source, \textit{ca.} several Torr, should help to quench electronically and/or vibrationally excited states of molecular ions prior to their injection into the flow tube. However, quenching of vibrational states is difficult, as confirmed by studies on the O\textsubscript{2}+ reagent ion. Whilst the majority of these ions were found to be in the \(v = 0\) level, approximately 30\% were found to be in the \(v = 1\) and 2 vibrational levels. Similarly, for the N\textsubscript{2}+ reagent ions \(\sim 40\%\) were found to be in the \(v = 1\) vibrational level. It is possible that other reagent molecular ions may have internal energies above thermal. However, no curvature was observed in any of the pseudo-first-order kinetic plots, indicating that rate coefficients are the same for reactions involving the ground and any
vibrationally excited states. For the two atomic ions used in this investigation, N+ and O+, electronically excited states have previously been shown not to be present.8

Water contamination in the flow tube and He buffer gas flow resulted in electron transfer from H2O to those injected ions whose recombination energies are greater than the ionisation potential of H2O, 12.61 eV. This resulted in an H2O+ signal, which was usually less than 10% of the parent ion signal. Product ion branching ratios have been corrected for the contribution to the signals resulting from the reaction of SF5CF3 with H2O+. Some of the H2O+ was converted to H3O+ in the flow tube (H2O+ + H2O → H3O+ + OH). This caused no problem in the determination of the product ion branching ratios, because H3O+ is unreactive with SF5CF3. A separate problem encountered during experiments with H2O+ as the reagent ion was that OH+ and H3O+ were being injected into the flow tube together with H2O+. Again, because the H3O+ ions are unreactive with SF5CF3, their presence in the flow tube could be ignored. However, OH+ was found to react efficiently with SF5CF3. Reduction of the injection ion energy, which insured that the OH+ was not produced by collision-induced dissociation, did not remove the problem. Attempts to eliminate the OH+ signal by increasing the resolution of the injection mass spectrometer drastically reduced the H2O+ signal. The best compromise between OH+ rejection and H2O+ signal gave a reactant ion flux comprising 95% H2O+ and 5% OH+. No allowances have been made for the (small) contributions due to the OH+ reaction to the branching ratios for the reaction of H2O+ with SF5CF3.

The sample of SF5CF3 was commercially purchased (Apollo Scientific Limited) with a stated purity of 99%, and was used without further purification.
3. Results and Discussion

The experimental reaction rate coefficients, k_{exp}, the product ions, and their branching ratios are given in Table 1. NO$_2^+$, NO$^+$ and H$_3$O$^+$, whose recombination energies are 9.75 eV, 9.26 eV and 6.37 eV, respectively, do not react with SF$_5$CF$_3$, and hence are not included in Table 1. In order to assess the efficiency of the reactions, the experimental rate coefficients are compared with the predictions of capture theory. Essential information for capture theory are the polarisability and the dipole moment of SF$_5$CF$_3$. Neither of these quantities are available in the literature. The polarisability is estimated to be 8.4×10^{-30} m3 using the empirical approach of Miller and Savchik. Assuming that the dipole moment is zero, the capture rate coefficient can be calculated using the Langevin equation. The results of these calculations are the values for k_L presented in Table 1. The presence of a dipole moment will increase the capture rate coefficient. The effect can be estimated by using the results of parameterized fits to trajectory calculations. For example, for the reaction of N$^+$ with SF$_5$CF$_3$, a value for the dipole moment of 1 Debye would increase the capture rate coefficient from 1.9×10^{-9} cm3 s$^{-1}$ to 2.1×10^{-9} cm3 s$^{-1}$. A comparison of the experimental rate coefficients with the Langevin values will nevertheless provide a good indication of whether a reaction is efficient, with most captures leading to reaction, or inefficient.

The determination of reaction pathways requires knowledge of the ion and neutral products. In our experiments, only the masses and relative intensities of the ion products are determined, so the neutral product(s) can only be inferred from mass balance and thermochemical arguments. The thermochemical analysis is restricted to considerations of enthalpy, and we have ignored any entropic effects. As discussed below, the majority of the reactions are presumed to proceed through dissociative charge transfer, and Table 1 contains the 0 K enthalpies for this reaction channel for all the product ions. The 0 K
enthalpies of the dissociative charge transfer routes have been calculated using the
dissociative ionization energy (DIE) for SF$_5$CF$_3$ → CF$_3^+$ + SF$_5$ + e$^-$ of 12.9 ± 0.4 eV
determined from the TPEPICO study, the adiabatic ionization potentials (IP) for SF$_5$ and
CF$_3$, and the bond dissociation energies (BDE) for (SF$_4^+$-F), (SF$_5^+$-F) and (CF$_3$-F). Thus, if
RE(M$^+$) represents the recombination energy of the reagent ion M$^+$, the enthalpies of
reaction for the various dissociative charge transfer channels are determined as follows:

\[
\begin{align*}
M^+ + SF_5CF_3 & \rightarrow CF_3^+ + SF_5 + M \\
& \rightarrow SF_5^+ + CF_3 + M \\
& \rightarrow SF_4^+ + CF_4 + M \\
& \rightarrow SF_3^+ + CF_3 + F + M
\end{align*}
\]

The enthalpies of these reactions are, respectively, given by

\[
\begin{align*}
\Delta_r H^o \, (1) &= \text{DIE} - \text{RE}(M^+) \\
\Delta_r H^o \, (2) &= \Delta_r H^o \, (1) + \text{IP(SF}_5) - \text{IP(CF}_3) \\
\Delta_r H^o \, (3) &= \Delta_r H^o \, (2) + \text{BDE(SF}_4^+ - F) - \text{BDE(CF}_3 - F) \\
\Delta_r H^o \, (4) &= \Delta_r H^o \, (3) + \text{BDE(SF}_3^+ - F)
\end{align*}
\]

There has been some controversy in the literature with regard to the values of
IP(SF$_5$) and IP(CF$_3$). The value we have adopted for IP(CF$_3$), 8.84 ± 0.20 eV, comes from
the recent TPEPICO study. For IP(SF$_5$), BDE(SF$_4^+$-F) and BDE(SF$_5^+$-F), two sets of
values have been used. One set is from the experimental guided ion beam study of Fisher et
al. who report IP(SF$_5$) = 9.60 ± 0.05 eV, BDE(SF$_4^+$-F) = 444 ± 10 kJ mol$^{-1}$ and BDE(SF$_5^+$-F)
= 35 ± 5 kJ mol$^{-1}$. The other set is from the theoretical study reported by Irikura, with
values of IP(SF$_5$) = 9.71 ± 0.16 eV, BDE(SF$_4^+$-F) = 371 ± 6 kJ mol$^{-1}$ and BDE(SF$_3^+$-F) =
56 ± 6 kJ mol$^{-1}$. The bond dissociation energy of CF$_3$-F is taken to be 541 ± 4 kJ mol$^{-1}$.
We note that the error in the values of ΔH^0 for the four product channels (1) – (4) is dominated by the uncertainty in the value of the DIE of SF$_5$CF$_3$ to CF$_3^+$ + SF$_5$ + e$, namely 0.4 eV or 39 kJ mol$^{-1}$.

Dissociative charge transfer is endothermic for a number of reaction channels presented in Table 1. When this is the case, alternative chemical routes, in which bonds are broken and formed, are suggested and discussed below. For these chemical routes, enthalpies of formation at 0 K ($\Delta f H^0$) for the neutral fragments are generally well-established.15 In the few cases where values were not available from the JANAF tables, we have made use of the enthalpies of formation at 298 K from the compilation by Lias et al,16 supplemented by thermochemical information from various other sources, as noted below.

As mentioned above, of the reagent ions used in this study, H$_3$O$^+$, NO$^+$, and NO$_2^+$ are found to be unreactive with SF$_5$CF$_3$. The reactions of the other ions with SF$_5$CF$_3$ are similar; namely, the reactions are efficient ($k_{exp} \approx k_L$) and CF$_3^+$ and SF$_3^+$ are the dominant product ions:

\[
\begin{align*}
M^+ + SF_5CF_3 & \rightarrow \begin{cases}
CF_3^+ + \text{neutral(s)} & \text{(5a)} \\
SF_3^+ + \text{neutral(s)} & \text{(5b)}
\end{cases}
\end{align*}
\]

With the exception of H$_2$O$^+$, SF$_4^+$ and SF$_5^+$ product ions are also observed for all the reactions. No SF$_2^+$, whose mass is only 1 u greater than that of CF$_3^+$, and which energetically is an allowed product ion for a number of reagent ions, was observed.

Dissociative charge transfer is an exothermic mechanism for reactions 5(a), for M = O, CO$_2$, CO, N, or N$_2$ (see table 1). For reactions with M = H$_2$O and N$_2$O, the errors on the enthalpies of the reactions are sufficiently large that dissociative charge transfer leading to CF$_3^+$ could be either endothermic or exothermic. Chemical pathways leading to the
observed CF$_3^+$ product ion cannot be ruled out for these two reactions. However, as discussed below, the CF$_3^+$ and SF$_3^+$ branching ratios associated with the N$_2$O$^+$ reaction, 75% and 19% respectively, imply that long-range dissociative charge transfer has taken place.

CF$_3^+$ is also an observed product for the reaction with O$_2^+$, with a high branching ratio (63%). This indicates that CF$_3^+$ can be produced from a reaction of SF$_5$CF$_3$ with O$_2^+$ in any of its vibrational states ($v = 0, 1$ or 2). In agreement with this, the pseudo-first-order plots of $ln[O_2^+ \text{ counts}]$ versus SF$_5$CF$_3$ concentration show no curvature. For the reaction with O$_2^+$, the reaction enthalpies for the dissociative charge transfer channel leading to CF$_3^+$ (+ SF$_5$ + O$_2$) are $\Delta rH^0 = 80, 62, \text{ and } 43 \text{ kJ mol}^{-1}$, for O$_2^+$ $v = 0, 1,$ and 2, respectively, with an associated error of $\pm 39 \text{ kJ mol}^{-1}$ in each value. Thus dissociative charge transfer is endothermic for this reaction. We conclude that the CF$_3^+$ channel is the result of a chemical interaction in which bonds are broken and formed. The only possible route is one in which SF$_5$ binds with O$_2$:

$$O_2^+(v = 0) + SF_5CF_3 \rightarrow CF_3^+ + SF_5O_2 \quad \Delta rH^0 = 23 \pm 40 \text{ kJ mol}^{-1} \quad (6)$$

The enthalpy of this reaction was determined using a value for the 295 K BDE(SF$_5$-O$_2$) of 57 \pm 8 kJ mol$^{-1}$.17

Dissociative charge transfer is exothermic for the reactions 5(b), providing the neutral products are M, CF$_4$ and F for M = H$_2$O, N$_2$O, O, CO$_2$, CO, N, or N$_2$, respectively. There are other possible exothermic pathways leading to the formation of the ion products in reactions 5(a) and 5(b) which require the breaking and formation of bonds, many of which are more exothermic than those for dissociative charge transfer. For the reactant ions whose recombination energies are greater than 12.8 eV, the branching ratios are in excellent
agreement with those obtained in the recent TPEPICO experiment. This suggests that long-range dissociative charge transfer is the dominant mechanism for these reactions. For \(\text{H}_2\text{O}^+ \), dissociative charge transfer leading to \(\text{SF}_3^+ \) cannot be ruled out on energetic grounds, because of the substantial uncertainty in the dissociative ionization energy of \(\text{SF}_3\text{CF}_3 \) (\(\rightarrow \text{SF}_3 + \text{CF}_3^- + e^- \)). There is a dramatic change in the pattern of the product ion branching ratios for \(\text{N}_2\text{O}^+ \) (RE = 12.89 eV) compared to \(\text{H}_2\text{O}^+ \) (RE = 12.61 eV). For \(\text{N}_2\text{O}^+ \) the major product ion is \(\text{CF}_3^+ \) (75%), while the reaction with \(\text{H}_2\text{O}^+ \) mainly generates \(\text{SF}_3^+ \) (92%). This change in the reaction pathway correlates well with the observed (weak) onset of photoionisation of \(\text{SF}_3\text{CF}_3 \) at 12.9 eV. Reagent ions with recombination energies close to or greater than 12.9 eV are probably reacting efficiently by a (long-range) dissociative charge transfer mechanism. Ions whose recombination energies are less than 12.9 eV can only react with \(\text{SF}_3\text{CF}_3 \) through a short-range mechanism, either by charge transfer (if energetically allowed) or by chemical reaction channels in which bonds are broken and formed. In particular, \(\text{H}_2\text{O}^+ \) reacts with \(\text{SF}_3\text{CF}_3 \) via a close-range interaction in which a chemical pathway is likely to dominate. The only possibility is:

\[
\text{H}_2\text{O}^+ + \text{SF}_3\text{CF}_3 \rightarrow \text{SF}_3^+ + \text{CF}_4 + \text{HF} + \text{HO} \quad \Delta H^\circ = -36 \pm 48 \text{ kJ mol}^{-1} \quad (7)
\]

For \(\text{O}_2^+ (v = 0) \) the production of \(\text{SF}_3^+ \) by dissociative charge transfer is endothermic. The high branching ratio associated with \(\text{SF}_3^+ (31 \%) \) indicates that all \(\text{O}_2^+ \) ions \((v = 0, 1 \text{ and } 2) \) can proceed down the pathway leading to this product ion. Hence we propose that an inefficient chemical pathway produces \(\text{SF}_3^+ \), with \(\text{CF}_4 \) and \(\text{FO}_2 \) as the neutral products:
\[O_2^+ + SF_5CF_3 \rightarrow SF_5^+ + CF_4 + FO_2 \quad \Delta rH_0^o = +10 \pm 52 \text{ kJ mol}^{-1} \quad (8) \]

The \(SF_4^+ \) ion observed as a minor product for the reactions with \(H_2O^+ \), \(N_2O^+ \), \(O^+ \), \(CO_2^+ \), \(CO^+ \), \(N^+ \), and \(N_2^+ \) probably results from dissociative charge transfer (see below). \(SF_4^+ \) is also observed in the reaction with \(O_2^+ \). This appears not to be consistent with the experimental thermochemical data set of Fisher et al.\(^{12}\) (unless \(SF_4^+ \) is formed from vibrationally excited \(O_2^+ \)) and suggests that the theoretical data set of Irikura\(^{13}\) may be the better set. However, \(SF_4^+ \) is a minor product, so the observation of this ion does not provide a strong comparison of the two data sets. Chemical pathways are the only exothermic routes leading to \(SF_5^+ \) for the reactions with \(N_2O^+ \) and \(O_2^+ \):

\[
\begin{align*}
N_2O^+ + SF_5CF_3 & \rightarrow SF_5^+ + CF_3O + N_2 \quad \Delta rH_0^o = -163 \text{ kJ mol}^{-1} \quad (9a) \\
& \rightarrow SF_5^+ + CF_2O + N_2 + F \quad \Delta rH_0^o = -89 \text{ kJ mol}^{-1} \quad (9b) \\
O_2^+ + SF_5CF_3 & \rightarrow SF_5^+ + CF_3O_2 \quad \Delta rH_0^o = 3 \pm 46 \text{ kJ mol}^{-1} \quad (10)
\end{align*}
\]

To determine the \(\Delta rH_{298}^o \) for reaction \(9(a) \) we have used a value of \(\Delta fH_{298}^o(CF_3O) = -672 \text{ kJ mol}^{-1} \), obtained from a G3 calculation by Haworth \textit{et al.}\(^{20}\) The enthalpy for reaction \(10 \) has been determined using Fisher \textit{et al}’s value\(^{12}\) for IP(SF_5) and a BDE(CF_3-O_2) of 150 \pm 15 kJ mol\(^{-1}\) presented in the study by Danis \textit{et al.}\(^{21}\) from a reinterpretation of the results of Antonik.\(^{22}\) If Irikura’s value\(^{13}\) for IP(SF_5) is used, a value of \(\Delta rH_0^o = 14 \pm 48 \text{ kJ mol}^{-1} \) for reaction \(10 \) is obtained. For the other reagent ions (\(O^+ \), \(CO_2^+ \), \(CO^+ \), \(N^+ \), and \(N_2^+ \)) with higher recombination energies, dissociative charge transfer leading to \(SF_5^+ \) is exothermic.

Only the reaction with \(N_2^+ \), the ion with highest recombination energy in this study, resulted in a product ion not observed in any other reaction. This product ion has a mass of 177 u, and could either be \(SF_4CF_3^+ \) or \(SF_3CF_2^+ \) (or both). However, the S-F bond strength
in SF$_6$ is less that that of C-F in CF$_4$, and hence we propose that SF$_4$CF$_3^+$ is the product ion. The enthalpy of formation of SF$_4$CF$_3^+$ is not available in the literature, but its observation from the reaction:

$$\text{N}_2^+(v = 1) + \text{SF}_5\text{CF}_3 \rightarrow \text{SF}_4\text{CF}_3^+ + \text{N}_2 + \text{F} \quad (11)$$

can be combined with $\Delta_f H^0(\text{SF}_5\text{CF}_3) = -1770$ kJ mol$^{-1}$ from the TPEPICO study,2 to provide an upper limit; $\Delta_f H^0(\text{SF}_4\text{CF}_3^+) < -318$ kJ mol$^{-1}$.

The formation of CF$_3^+$ results from the cleavage of the S-C bond following charge transfer to SF$_5$CF$_3$. The minor product SF$_5^+$ can also be formed by cleavage of the S-C bond. The energy difference between the lowest energy states of these two channels is equal to the difference in the ionization potentials of SF$_5$ and CF$_3$, $\text{IP(SF}_5^+) - \text{IP(CF}_3^+) = 0.76$ eV, Fisher et al,12 or 0.87 eV, Irikura.13 The relative ion product branching ratios for CF$_3^+$ and SF$_5^+$ are then seen to reflect the relative energies of the two channels. Nevertheless, the small branching ratio associated with the SF$_5^+$ ion for reactions of SF$_5$CF$_3$ with the higher recombination energy ions (e.g. N$_2^+$, and N$^+$), is surprising and cannot readily be explained.

The route to SF$_3^+$ is uncertain. Intramolecular rearrangement may occur within the lifetime of (SF$_3$CF$_3^+$)*, involving F$^-$ migration from SF$_5$ to CF$_3^+$ to form SF$_4^+$ in an excited state and neutral CF$_4$. The decay of the excited SF$_4^+$ is the suggested channel for the formation of SF$_3^+$:

$$\left(\text{SF}_4^+\right)^* \rightarrow \text{SF}_3^+ + \text{F} \quad (12)$$
4. Conclusions

This communication presents the first gas-phase study describing the reactions of small cations with SF$_5$CF$_3$. For reagent cations (M$^+$) whose recombination energies are greater than or equal to 12.9 eV, the major ion product, CF$_3^+$, is a result of dissociative charge transfer leading to the cleavage of the S-C bond. The neutral products are inferred to be SF$_5$ + M. We propose that the other major ion product, SF$_3^+$, results from an intramolecular transfer, with F$^-$ migrating to CF$_3^+$ within the lifetime of the ion-molecule complex, forming SF$_4^+$ in an excited state which has a high probability of decaying to SF$_3^+$ and F. The neutral products of the reactions are then CF$_4$ + F + M. H$_2$O$^+$ and O$_2^+$ have recombination energies below 12.9 eV. Their reactions with SF$_5$CF$_3$, as revealed by the ion product branching ratios and thermochemical analysis, are different, and have been shown to involve chemical pathways.

The results presented demonstrate that ionospheric cations will react with and destroy SF$_5$CF$_3$. Therefore, such reactions will have to be taken into account in any modelling used to determine the atmospheric lifetime of SF$_5$CF$_3$. A more detailed study of the reactions of a large number of other cations of importance to industrial plasmas (e.g. Ar$^+$, F$^+$, CF$^+$, CF$_3^+$, SF$_3^+$, and SF$_5^+$) with SF$_5$CF$_3$ and another derivative of SF$_6$, SF$_5$Cl, will be reported soon.23 We are also studying the reactions of small anions with both SF$_5$CF$_3$ and SF$_5$Cl in the SIFT apparatus.

Acknowledgements

We are grateful to TPI, EPSRC, (grant reference: GR/L82083) for the financial support of this study. Miss C. Atterbury thanks the School of Chemistry, University of Birmingham, for partial funding of a research studentship.
References

Table 1. The measured 300 K reaction rate coefficients (in units of $10^{-9} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$), k_{exp}, and cation product ions and their branching ratios (percentage) for the reactions of O_2^+, H_2O^+, N_2O^+, O^+, CO_2^+, CO^+, N^+, and N_2^+ with SF$_5$CF$_3$. The recombination energies of the reagent cations are listed in eV in brackets under the cations. The capture rate coefficients, calculated using Langevin theory,10 are presented in square brackets under the experimental values. The estimated uncertainties in the measured rate coefficients and the cation branching ratios are $\pm 20\%$. The trace given for the SF$_4^+$ product ion represents a detectable signal with our apparatus, but whose branching ratio is less than 1%. The reaction channel is assumed to be dissociative charge transfer, and the 0 K enthalpies of reaction for these channels are presented. Alternative chemical routes are discussed in the text for those dissociative charge transfer pathways which are endothermic. For the formation of the ions products SF$_3^+$ and SF$_4^+$, two values for the 0 K enthalpy of reaction are given. The first value is calculated using the data set of Fisher et al.12 whereas the second corresponds to that of Irikura.13 The two values given for the 0 K enthalpy of reaction for the formation of SF$_5^+$ by dissociative charge transfer result from taking the IP(SF$_5$) to be either 9.60 eV (Fisher et al.12) or 9.71 eV (Irikura13).
<table>
<thead>
<tr>
<th>Reagent Ion</th>
<th>Rate Coefficient (/10^{-9} \text{ cm}^3 \text{ s}^{-1})</th>
<th>Product Ion ((%))</th>
<th>Proposed Neutral Products</th>
<th>(\Delta_f H^0_0) ((\text{kJmol}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(_2^+)</td>
<td>1.6 (\quad) (15.58) [1.4]</td>
<td>CF(_3^+) (65)</td>
<td>SF(_5^+) +N(_2^)</td>
<td>-258</td>
</tr>
<tr>
<td>SF(_4^+) (trace)</td>
<td>SF(_3^+) (28)</td>
<td>CF(_4^+) +F +N(_2^)</td>
<td>-248, -289</td>
<td></td>
</tr>
<tr>
<td>SF(_4^+) CF(_3^+) (2)</td>
<td>SF(_5^+) (5)</td>
<td>F +N(_2^)</td>
<td>-283, -345</td>
<td></td>
</tr>
<tr>
<td>SF(_4^+) (trace)</td>
<td>SF(_3^+) (17)</td>
<td>CF(_4^+) +N</td>
<td>-147, -187</td>
<td></td>
</tr>
<tr>
<td>SF(_5^+) (5)</td>
<td>SF(_3^+) (22)</td>
<td>CF(_4^+) +CO</td>
<td>-96, -137</td>
<td></td>
</tr>
<tr>
<td>SF(_5^+) (1)</td>
<td>SF(_3^+) (16)</td>
<td>CF(_4^+) +O</td>
<td>-59, -100</td>
<td></td>
</tr>
<tr>
<td>SF(_5^+) (1)</td>
<td>SF(_3^+) (92)</td>
<td>CF(_4^+) +H(_2)O</td>
<td>39 (± 45), -2 (± 47)</td>
<td></td>
</tr>
<tr>
<td>SF(_5^+) (trace)</td>
<td>SF(_3^+) (92)</td>
<td>CF(_4^+) +H(_2)O</td>
<td>4 (± 45), -58</td>
<td></td>
</tr>
<tr>
<td>SF(_5^+) (1)</td>
<td>SF(_3^+) (63)</td>
<td>SF(_5^+) +O(_2^)</td>
<td>80, 62, 43 (±39) (^b)</td>
<td></td>
</tr>
<tr>
<td>SF(_4^+) CF(_3^+) (2)</td>
<td>SF(_5^+) (4)</td>
<td>CF(_4^+) +O(_2^)</td>
<td>91, 50 (± 47)</td>
<td></td>
</tr>
<tr>
<td>SF(_5^+) (1)</td>
<td>SF(_3^+) (31)</td>
<td>CF(_3^+) +O(_2^)</td>
<td>56, -6 (± 46)</td>
<td></td>
</tr>
<tr>
<td>SF(_5^+) (trace)</td>
<td>SF(_3^+) (31)</td>
<td>CF(_3^+) +O(_2^)</td>
<td>153, 164</td>
<td></td>
</tr>
</tbody>
</table>

\(\Delta_f H^0_0\) of SF\(_4^+\) CF\(_3^+\) is unknown.

\(b\) The values given are for the \(v = 0, 1\) and 2 vibrational levels of O\(_2^+\), respectively.